Rather than cutting patients open, endoscopy allows surgeons to operate through small incisions by using an endoscope. This fiber optic instrument has a small video camera that gives doctors' a magnified internal. view of a surgical site on a television screen.
In abdominal endoscopy, known as laparoscopy, surgeons thread the fiber optic instrument into the abdomen. First performed in the late 1980s, laparoscopy is now routine for many procedures, such as surgery on the gallbladder and on female organs.
With robotic surgical systems, surgeons don't move endoscopic instruments directly with their hands. Instead, surgeons sit at a console several feet from the operating table and use joysticks similar to those used in video games. They perform surgical tasks by guiding the movement of the robotic arms in a process known as tele-manipulation.
The Food and Drug Administration reviews data on the safety and effectiveness of robotic software and hardware and requires manufacturers to implement training programs for surgeons. The FDA also monitors experimental uses for robotic applications, including clinical trials for robotic heart surgery. It's too soon to say for sure how far and how fast robotic surgery will grow, but experts say the future looks promising.
Two robotic surgical systems have received FDA clearance to be marketed in the United States: The da Vinci Surgical System,ZEUS robotic surgical system made by Intuitive Surgical, Inc. of Sunnyvale, Calif., is cleared to perform surgery under the direction of a surgeon. The , made by Computer Motion, Inc. of Goleta, Calif., has been cleared by the FDA to assist surgeons.
"[The] da Vinci is cleared to assist in advanced surgical techniques such as cutting and suturing [sewing]," says Neil Ogden, chief of the FDA's General Surgery Devices Branch in the Center for Devices and Radiologicai Health. "ZEUS is cleared to assist in grasping, holding, and moving things out of the way, but isn't cleared for cutting or suturing." Clinical trials on ZEUS are underway with the goal of obtaining FDA clearance to assist in the performance of advanced surgical tasks in the United States, according to Paul Nolan, senior director of customer training and education at Computer Motion.
The da Vinci Surgical System
In July 2000, the FDA cleared da Vinci as an endoscopic instrument control system for use in laparoscopic (abdominal) surgical procedures such as removal of the gallbladder and surgery for severe heartburn. In March 2001, the FDA cleared da Vinci for use in general non-cardiac thoracoscopic (inside the chest) surgical procedures--surgeries involving the lungs, esophagus, and the internal thoracic artery. This is also known as the internal mammary artery, a blood vessel inside the chest cavity. In coronary bypass surgery, surgeons detach the internal mammary artery and reroute it to a coronary artery. In June 2001, the FDA cleared da Vinci for use during laparascopic removal of the prostate (radical prostatectomy).
The da Vinci is intended to assist in the control of several endoscopic instruments, including rigid endoscopes, blunt and sharp dissectors, scissors, scalpels, and forceps. The system is cleared by the FDA to manipulate tissue by grasping, cutting, dissecting and suturing.
In use, a surgeon sits at a console several feet away from the operating table and manipulates the robot's surgical instruments. The robot has three hands attached to a free-standing cart. One arm holds a camera (endoscope) that has been passed into the patient through small openings. The surgeon operates the other two hands by inserting fingers into rings.
The arms use a technology called EndoWrist--flexible wrists that surgeons can bend and twist like human wrists. The surgeon uses hand movements and foot pedals to control the camera, adjust focus, and reposition the robotic arms. The da Vinci has a three-dimensional lens system, which magnifies the surgical field up to 15 times. Another surgeon stays beside the patient, adjusting the camera and instruments if needed.
There are 50 da Vinci systems placed in U.S. medical centers, 34 placed in Europe and five placed in Asia.
ZEUS Robotic Surgical System
The FDA cleared ZEUS in October 2001 to assist in the control of blunt dissectors, retractors, graspers, and stabilizers during laparoscopic and thoracoscopic surgeries.
ZEHS has three robotic arms that are mounted on the operating table. One robotic arm is called the Automated Endoscopic System for Optimal Positioning Robotic System (AESOP). AESOP is a voice-activated robot used to hold the endoscope. The FDA cleared AESOP to hold and position endoscopes in 1994, and voice activation was added later. ZEUS differs from the da Vinci system in that the AESOP part of ZEUS responds to voice commands. For example, a surgeon might say: "AESOP move right." The positioning arm then would move right until the "stop" command was given.
No comments:
Post a Comment